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coef.sgp Coefficients from an SGP model

Description

A function that extracts the estimated coefficients from an SGP object.

Usage

## S3 method for class 'sgp'
coef(object, lambda, index = 1:length(object$lambda), drop = TRUE, ...)

Arguments

object A object that was generated with sgp.

lambda The value of lambda at which the coefficients are to be extracted.

index The index that indicates the lambda at which the coefficients are to be extracted
(alternative to specifying ’lambda’).

drop A Boolean value that specifies whether empty dimensions should be removed.

... Other parameters of underlying basic functions.

Value

A vector or matrix with the estimated coefficients.
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Examples

n <- 100
p <- 12
nr <- 4
g <- paste0("Group ",ceiling(1:p / nr))
X <- matrix(rnorm(n * p), n, p)
b <- c(-3:3)
y_lin <- X[, 1:length(b)] %*% b + 5 * rnorm(n)
y_log <- rbinom(n, 1, exp(y_lin) / (1 + exp(y_lin)))

lin_fit <- sgp(X, y_lin, g, type = "linear")
coef(lin_fit, index = 5:7)

log_fit <- sgp(X, y_log, g, type = "logit")
coef(log_fit, index = 5:7)

coef.sgp.cv Coefficients from SGP models

Description

A function that extracts the estimated coefficients from an cross-validated SGP object.

Usage

## S3 method for class 'sgp.cv'
coef(object, lambda = object$lambda.min, index = object$min, ...)

Arguments

object A object that was generated with sgp.cv.

lambda The value of lambda at which the coefficients are to be extracted.

index The index that indicates the lambda at which the coefficients are to be extracted
(alternative to specifying ’lambda’).

... Other parameters of underlying basic functions.

Value

A vector or matrix with the estimated coefficients.

Examples

n <- 100
p <- 12
nr <- 4
g <- paste0("Group ",ceiling(1:p / nr))
X <- matrix(rnorm(n * p), n, p)
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b <- c(-3:3)
y_lin <- X[, 1:length(b)] %*% b + 5 * rnorm(n)
y_log <- rbinom(n, 1, exp(y_lin) / (1 + exp(y_lin)))

lin_fit <- sgp.cv(X, y_lin, g, type = "linear")
coef(lin_fit)

log_fit <- sgp.cv(X, y_log, g, type = "logit")
coef(log_fit)

get.loss A function that calculates the loss/cost

Description

A function that calculates the loss/cost

Usage

get.loss(y, pred, type)

Arguments

y The response vector.

pred The predicted values for the response.

type A string indicating the type of regression model (linear or binomial).

Value

The loss of the input vectors.

plot.sgp Plots the coefficient path of an SGP object

Description

Produces a coefficient profile plot of the coefficient paths for a fitted SGP object

Usage

## S3 method for class 'sgp'
plot(x, alpha = 1, legend.pos, label = FALSE, log.l = FALSE, norm = FALSE, ...)
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Arguments

x A object that was generated with sgp.

alpha Tuning parameter for the alpha-blending.

legend.pos Coordinates or keyword for positioning the legend.

label A Boolean value that specifies whether the plot should be annotated.

log.l A Boolean value that specifies whether the horizontal axis should be on the log
scale.

norm A Boolean value that specifies whether the norm of each group should be plot-
ted.

... Other parameters of underlying basic functions.

Value

A plot object with the coefficient path of an SGP.

Examples

n <- 100
p <- 12
nr <- 4
g <- paste0("Group ",ceiling(1:p / nr))
X <- matrix(rnorm(n * p), n, p)
b <- c(-3:3)
y_lin <- X[, 1:length(b)] %*% b + 5 * rnorm(n)
y_log <- rbinom(n, 1, exp(y_lin) / (1 + exp(y_lin)))

lin_fit <- sgp(X, y_lin, g, type = "linear")
plot(lin_fit, legend.pos = "topright", label = TRUE)
plot(lin_fit, label = TRUE, norm = TRUE)

log_fit <- sgp(X, y_log, g, type = "logit")
plot(log_fit, legend.pos = "topright", label = TRUE)
plot(log_fit, label = TRUE, norm = TRUE)

plot.sgp.cv Plots the cross-validation curve from a SGP object

Description

Plots the cross-validation curve as a function of the lambda values used.

Usage

## S3 method for class 'sgp.cv'
plot(x, log.l = TRUE, highlight = TRUE, col = "firebrick3", ...)
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Arguments

x A object that was generated with sgp.cv.

log.l A Boolean value that specifies whether the horizontal axis should be on the log
scale.

highlight A Boolean value that specifies whether a vertical line should be added at the
value where the cross-validation error is minimized.

col Controls the color of the dots.

... Other parameters of underlying basic functions.

Value

A plot object with the cross-validation curve of an SGP.

Examples

n <- 100
p <- 12
nr <- 4
g <- paste0("Group ",ceiling(1:p / nr))
X <- matrix(rnorm(n * p), n, p)
b <- c(-3:3)
y_lin <- X[, 1:length(b)] %*% b + 5 * rnorm(n)
y_log <- rbinom(n, 1, exp(y_lin) / (1 + exp(y_lin)))

lin_fit <- sgp.cv(X, y_lin, g, type = "linear")
plot(lin_fit, col = "blue")

log_fit <- sgp.cv(X, y_log, g, type = "logit")
plot(log_fit, col = "blue")

predict.sgp Predictions based on a SGP model

Description

A function that extracts information from a SGP object and performs predictions.

Usage

## S3 method for class 'sgp'
predict(
object,
X = NULL,
extract = c("link", "response", "class", "coef", "vars", "groups", "nvars", "ngroups",

"norm"),
lambda,
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index = 1:length(object$lambda),
...

)

Arguments

object A object that was generated with sgp.

X The design matrix for making predictions.

extract A string indicating the type of information to return.

lambda The value of lambda at which predictions should be made.

index The index that indicates the lambda at which predictions should be made (alter-
native to specifying ’lambda’).

... Other parameters of underlying basic functions.

Value

Different objects depending on the sting indicated by ’extract’.

Examples

n <- 100
p <- 12
nr <- 4
g <- paste0("Group ",ceiling(1:p / nr))
X <- matrix(rnorm(n * p), n, p)
b <- c(-3:3)
y_lin <- X[, 1:length(b)] %*% b + 5 * rnorm(n)
y_log <- rbinom(n, 1, exp(y_lin) / (1 + exp(y_lin)))

lin_fit <- sgp(X, y_lin, g, type = "linear")
predict(lin_fit, X = X, extract = "nvars")

log_fit <- sgp(X, y_log, g, type = "logit")
predict(log_fit, X = X, extract = "nvars")

predict.sgp.cv Predictions based on a SGP models

Description

A function that extracts information from a cross-validated SGP object and performs predictions.
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Usage

## S3 method for class 'sgp.cv'
predict(
object,
X,
lambda = object$lambda.min,
index = object$min,
extract = c("link", "response", "class", "coefficients", "vars", "groups", "nvars",

"ngroups", "norm"),
...

)

Arguments

object A object that was generated with sgp.cv.

X The design matrix for making predictions.

lambda The value of lambda at which predictions should be made.

index The index that indicates the lambda at which predictions should be made (alter-
native to specifying ’lambda’).

extract A string indicating the type of information to return.

... Other parameters of underlying basic functions.

Value

Different objects depending on the sting indicated by ’extract’.

Examples

n <- 100
p <- 12
nr <- 4
g <- paste0("Group ",ceiling(1:p / nr))
X <- matrix(rnorm(n * p), n, p)
b <- c(-3:3)
y_lin <- X[, 1:length(b)] %*% b + 5 * rnorm(n)
y_log <- rbinom(n, 1, exp(y_lin) / (1 + exp(y_lin)))

lin_fit <- sgp.cv(X, y_lin, g, type = "linear")
predict(lin_fit, X = X, extract = "link")

log_fit <- sgp.cv(X, y_log, g, type = "logit")
predict(log_fit, X = X, extract = "class")
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process.group Process groupings for a sparse group penalty

Description

A function that checks the group information for possible errors and processes it.

Usage

process.group(group, group.weight)

Arguments

group A vector that specifies the group membership of each variable in X.

group.weight A vector specifying weights that are multiplied by the group penalty to account
for different group sizes.

Value

A structure containing the prepared group structure and, as an attribute, its labels and group weights.

process.lambda Set up a lambda sequence

Description

A function that sets up a lambda sequence for a sparse group penalty.

Usage

process.lambda(
X,
y,
group,
Z,
type,
alpha,
lambda.min,
log.lambda,
nlambda,
group.weight,
ada_mult

)
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Arguments

X The design matrix without intercept with the variables to be selected.

y The response vector.

group A vector indicating the group membership of each variable in X.

Z The design matrix of the variables to be included in the model without penaliza-
tion.

type A string indicating the type of regression model (linear or binomial).

alpha Tuning parameter for the mixture of penalties at group and variable level. A
value of 0 results in a selection at group level, a value of 1 results in a selection
at variable level and everything in between is bi-level selection.

lambda.min An integer multiplied by the maximum lambda to define the end of the lambda
sequence.

log.lambda A Boolean value that specifies whether the values of the lambda sequence should
be on the log scale.

nlambda An integer that specifies the length of the lambda sequence.

group.weight A vector specifying weights that are multiplied by the group penalty to account
for different group sizes.

ada_mult An integer that defines the multiplier for adjusting the convergence threshold.

Value

A vector with values for lambda.

process.penalty Process the arguments about the sparse group penalty

Description

A function that checks arguments about the penalty and translates them to integer (for the C++
code).

Usage

process.penalty(penalty, pvar, pgr, vargamma, grgamma, vartau, grtau, alpha)

Arguments

penalty A string that specifies the sparse group penalty to be used.

pvar A string that specifies the penalty used at the variable level.

pgr A string that specifies the penalty used at the group level.

vargamma An integer that defines the value of gamma for the penalty at the variable level.

grgamma An integer that specifies the value of gamma for the penalty at the group level.
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vartau An integer that defines the value of tau for the penalty at the variable level.

grtau An integer that specifies the value of tau for the penalty at the group level.

alpha Tuning parameter for the mixture of penalties at group and variable level. A
value of 0 results in a selection at group level, a value of 1 results in a selection
at variable level and everything in between is bi-level selection.

Value

A list of two integers indicating the penalty for the C++ code.

process.X Process X for a sparse group penalty

Description

A function that checks the design matrix X for possible errors and scales it.

Usage

process.X(X, group)

Arguments

X The design matrix without intercept with the variables to be selected.

group A vector that specifies the group membership of each variable in X.

Value

A list containing:

X The standardized design matrix X.

vars The variable names of the matrix.

center The center of the variables before the transformation.

scale The scale of the variables before the transformation.
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process.y Process y for a sparse group penalty

Description

A function that checks the response vector y for possible errors.

Usage

process.y(y, type)

Arguments

y The response vector.

type A string indicating the type of regression model (linear or binomial).

Value

The verified response vector y.

process.Z Process Z for a sparse group penalty

Description

A function that checks the design matrix Z for possible errors and scales it.

Usage

process.Z(Z)

Arguments

Z The design matrix of the variables to be included in the model without penaliza-
tion.

Value

A list containing:

Z The standardized design matrix Z.

vars The variable names of the matrix.

center The center of the variables before the transformation.

scale The scale of the variables before the transformation.
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sgp Fit a sparse group regularized regression path

Description

A function that determines the regularization paths for models with sparse group penalties at a grid
of values for the regularization parameter lambda.

Usage

sgp(
X,
y,
group = 1:ncol(X),
penalty = c("sgl", "sgs", "sgm", "sge"),
alpha = 1/3,
type = c("linear", "logit"),
Z = NULL,
nlambda = 100,
lambda.min = {

if (nrow(X) > ncol(X))
1e-04

else 0.05
},
log.lambda = TRUE,
lambdas,
prec = 1e-04,
ada_mult = 2,
max.iter = 10000,
standardize = TRUE,
vargamma = ifelse(pvar == "scad" | penalty == "sgs", 4, 3),
grgamma = ifelse(pgr == "scad" | penalty == "sgs", 4, 3),
vartau = 1,
grtau = 1,
pvar = c("lasso", "scad", "mcp", "exp"),
pgr = c("lasso", "scad", "mcp", "exp"),
group.weight = rep(1, length(unique(group))),
returnX = FALSE,
...

)

Arguments

X The design matrix without intercept with the variables to be selected.

y The response vector.

group A vector indicating the group membership of each variable in X.
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penalty A string that specifies the sparse group penalty to be used.

alpha Tuning parameter for the mixture of penalties at group and variable level. A
value of 0 results in a selection at group level, a value of 1 results in a selection
at variable level and everything in between is bi-level selection.

type A string indicating the type of regression model (linear or binomial).

Z The design matrix of the variables to be included in the model without penaliza-
tion.

nlambda An integer that specifies the length of the lambda sequence.

lambda.min An integer multiplied by the maximum lambda to define the end of the lambda
sequence.

log.lambda A Boolean value that specifies whether the values of the lambda sequence should
be on the log scale.

lambdas A user supplied vector with values for lambda.

prec The convergence threshold for the algorithm.

ada_mult An integer that defines the multiplier for adjusting the convergence threshold.

max.iter The convergence threshold for the algorithm.

standardize An integer that defines the multiplier for adjusting the convergence threshold.

vargamma An integer that defines the value of gamma for the penalty at the variable level.

grgamma An integer that specifies the value of gamma for the penalty at the group level.

vartau An integer that defines the value of tau for the penalty at the variable level.

grtau An integer that specifies the value of tau for the penalty at the group level.

pvar A string that specifies the penalty used at the variable level.

pgr A string that specifies the penalty used at the group level.

group.weight A vector specifying weights that are multiplied by the group penalty to account
for different group sizes.

returnX A Boolean value that specifies whether standardized design matrix should be
returned.

... Other parameters of underlying basic functions.

Details

Two options are available for choosing a penalty. With the argument penalty, the methods Sparse
Group LASSO, Sparse Group SCAD, Sparse Group MCP and Sparse Group EP can be selected
with the abbreviations sgl, sgs, sgm and sge. Alternatively, penalties can be combined additively
with the arguments pvar and pgr, where pvar is the penalty applied at the variable level and pgr is
the penalty applied at the group level. The options are lasso, scad, mcp and exp for Least Abso-
lute Shrinkage and Selection Operator, Smoothly Clipped Absolute Deviation, Minimax Concave
Penalty and Exponential Penalty.
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Value

A list containing:

beta A vector with estimated coefficients.

type A string indicating the type of regression model (linear or binomial).

group A vector indicating the group membership of the individual variables in X.

lambdas The sequence of lambda values.

alpha Tuning parameter for the mixture of penalties at group and variable level.

loss A vector containing either the residual sum of squares (linear) or the negative log-likelihood
(binomial).

prec The convergence threshold used for each lambda.

n Number of observations.

penalty A string indicating the sparse group penalty used.

df A vector of pseudo degrees of freedom for each lambda.

iter A vector of the number of iterations for each lambda.

group.weight A vector of weights multiplied by the group penalty.

y The response vector.

X The design matrix without intercept.

References

• Buch, G., Schulz, A., Schmidtmann, I., Strauch, K., and Wild, P. S. (2024) Sparse Group
Penalties for bi-level variable selection. Biometrical Journal, 66, 2200334. doi:10.1002/
bimj.202200334

• Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011) A Sparse-Group Lasso. Journal
of computational and graphical statistics, 22(2), 231-245. doi:10.1080/10618600.2012.681250

• Breheny, P., and Huang J. (2009) Penalized methods for bi-level variable selection. Statistics
and its interface, 2: 369-380. doi:10.4310/sii.2009.v2.n3.a10

Examples

# Generate data
n <- 100
p <- 200
nr <- 10
g <- ceiling(1:p / nr)
X <- matrix(rnorm(n * p), n, p)
b <- c(-3:3)
y_lin <- X[, 1:length(b)] %*% b + 5 * rnorm(n)
y_log <- rbinom(n, 1, exp(y_lin) / (1 + exp(y_lin)))

# Linear regression
lin_fit <- sgp(X, y_lin, g, type = "linear", penalty = "sgl")
plot(lin_fit)
lin_fit <- sgp(X, y_lin, g, type = "linear", penalty = "sgs")

https://doi.org/10.1002/bimj.202200334
https://doi.org/10.1002/bimj.202200334
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.4310/sii.2009.v2.n3.a10
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plot(lin_fit)
lin_fit <- sgp(X, y_lin, g, type = "linear", penalty = "sgm")
plot(lin_fit)
lin_fit <- sgp(X, y_lin, g, type = "linear", penalty = "sge")
plot(lin_fit)

# Logistic regression
log_fit <- sgp(X, y_log, g, type = "logit", penalty = "sgl")
plot(log_fit)
log_fit <- sgp(X, y_log, g, type = "logit", penalty = "sgs")
plot(log_fit)
log_fit <- sgp(X, y_log, g, type = "logit", penalty = "sgm")
plot(log_fit)
log_fit <- sgp(X, y_log, g, type = "logit", penalty = "sge")
plot(log_fit)

sgp.cv Cross-validation for sparse group penalties

Description

A function that performs k-fold cross-validation for sparse group penalties for a lambda sequence.

Usage

sgp.cv(
X,
y,
group = 1:ncol(X),
Z = NULL,
...,
nfolds = 10,
seed,
fold,
type,
returnY = FALSE,
print.trace = FALSE

)

Arguments

X The design matrix without intercept with the variables to be selected.

y The response vector.

group A vector indicating the group membership of each variable in X.

Z The design matrix of the variables to be included in the model without penaliza-
tion.
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... Other parameters of underlying basic functions.

nfolds The number of folds for cross-validation.

seed A seed provided by the user for the random number generator.

fold A vector of folds specified by the user (default is a random assignment).

type A string indicating the type of regression model (linear or binomial).

returnY A Boolean value indicating whether the fitted values should be returned.

print.trace A Boolean value that specifies whether the beginning of a fold should be printed.

Value

A list containing:

cve The average cross-validation error for each value of lambda.

cvse The estimated standard error for each value of cve.

lambdas The sequence of lambda values.

fit The sparse group penalty model fitted to the entire data.

fold The fold assignments for each observation for the cross-validation procedure.

min The index of lambda corresponding to the minimum cross-validation error.

lambda.min The value of lambda with the minimum cross-validation error.

null.dev The deviance for the empty model.

pe The cross-validation prediction error for each value of lambda (for binomial only).

pred The fitted values from the cross-validation folds.

Examples

# Generate data
n <- 100
p <- 200
nr <- 10
g <- ceiling(1:p / nr)
X <- matrix(rnorm(n * p), n, p)
b <- c(-3:3)
y_lin <- X[, 1:length(b)] %*% b + 5 * rnorm(n)
y_log <- rbinom(n, 1, exp(y_lin) / (1 + exp(y_lin)))

# Linear regression
lin_fit <- sgp.cv(X, y_lin, g, type = "linear", penalty = "sgl")
plot(lin_fit)
predict(lin_fit, extract = "vars")
lin_fit <- sgp.cv(X, y_lin, g, type = "linear", penalty = "sgs")
plot(lin_fit)
predict(lin_fit, extract = "vars")
lin_fit <- sgp.cv(X, y_lin, g, type = "linear", penalty = "sgm")
plot(lin_fit)
predict(lin_fit, extract = "vars")
lin_fit <- sgp.cv(X, y_lin, g, type = "linear", penalty = "sge")
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plot(lin_fit)
predict(lin_fit, extract = "vars")

# Logistic regression
log_fit <- sgp.cv(X, y_log, g, type = "logit", penalty = "sgl")
plot(log_fit)
predict(log_fit, extract = "vars")
log_fit <- sgp.cv(X, y_log, g, type = "logit", penalty = "sgs")
plot(log_fit)
predict(log_fit, extract = "vars")
log_fit <- sgp.cv(X, y_log, g, type = "logit", penalty = "sgm")
plot(log_fit)
predict(log_fit, extract = "vars")
log_fit <- sgp.cv(X, y_log, g, type = "logit", penalty = "sge")
plot(log_fit)
predict(log_fit, extract = "vars")
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